
866	 VOLUME 17 | NUMBER 6 | JUNE 2014  nature NEUROSCIENCE

a r t ic  l e s

The rodent barrel cortex has become a popular model system for diverse 
neuroscience studies, including tactile sensation, sensorimotor integra-
tion, structural and functional plasticity, cortical development, and 
neurological disease. Perhaps surprisingly, the sensory properties of 
barrel cortex neurons have remained mysterious. For technical reasons, 
most studies have investigated response properties by isolated deflec-
tions of single facial whiskers1–6. Barrel cortex neurons may, however, 
be highly sensitive to multi-whisker stimuli involving complex interac-
tions of the space, time and direction of whisker movement. During 
exploration, a rodent contacts objects simultaneously with multiple 
whiskers7,8 and discriminates object textures, shapes and locations with 
psychophysical thresholds similar to humans with their fingertips9. The 
importance of multi-whisker integration is further suggested by the fact 
that the axons of pyramidal neurons span multiple cortical columns 
and, in some cases, the entire barrel field10. How do neurons in barrel 
cortex respond to spatiotemporally complex stimuli?

Studies using single-whisker stimuli have concluded that the  
surround receptive field is largely suppressive, with stimulation of 
the central principal whisker alone being an equally or more potent 
driver of neural activity than co-stimulation of the principal whisker 
and surrounding whiskers11–15. Facilitatory surrounds have been 
noted only in a minority of cells under specific conditions, such as 
short delays between whisker deflections16,17. Several groups have 
applied complex multi-whisker stimuli13,14,17,18, but had to predict in 
advance the relevant stimulus dimensions. An alternative approach 
with a long history in the visual and auditory systems is ‘reverse cor-
relation’, mathematically deducing a neuron’s receptive field from its 
responses to a set of random stimulus patterns sampled from a large 
space of relevant dimensions19.

When the dimensionality of a stimulus space is high, a large 
number of spikes are required to identify the receptive field. However, 
many neurons in the cortex have low firing rates20, and sparse firing  
has been well documented in barrel cortex under a variety of condi-
tions, including anesthesia, sedation, quiet wakefulness and active 
behavior21,22. Indeed, a recent study found that, even when focusing 
on the most active layers of barrel cortex, only one quarter of all 
extracellular recordings discharged a sufficient number of spikes for 
reverse correlation23. Seemingly silent neurons may reflect overall 
sparse firing among neurons or an experimental inability to identify 
the optimal stimuli for highly selective neurons20.

We overcame these low firing rates to study receptive fields by 
recording intracellularly, gaining access to information contained 
in the subthreshold synaptic inputs normally hidden to extracel-
lular recording. Combining this with a multi-whisker stimulator 
system that moves nine whiskers independently in any direction 
allowed us to explore a vast stimulus space. Our method identified 
spatiotemporal receptive fields (STRFs) even for neurons with little 
or no spiking activity, orders of magnitude faster than conventional 
spike-based approaches. Notably, given a suitable stimulus repre-
sentation, the response of a neuron could be captured by a simple 
model in which responses to movements of different whiskers add 
linearly. In contrast with conventional single-whisker stimuli, com-
plex stimuli revealed markedly sharpened receptive fields, largely 
as a result of the effects of adaptation. Under these conditions, the 
surround facilitated rather than suppressed responses to the prin-
cipal whisker. This switch in spatiotemporal receptive fields may 
be essential for discriminating complex shapes and textures during 
natural sensing.
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Of all of the sensory areas, barrel cortex is among the best understood in terms of circuitry, yet least understood in terms of 
sensory function. We combined intracellular recording in rats with a multi-directional, multi-whisker stimulator system to 
estimate receptive fields by reverse correlation of stimuli to synaptic inputs. Spatiotemporal receptive fields were identified 
orders of magnitude faster than by conventional spike-based approaches, even for neurons with little spiking activity. Given a 
suitable stimulus representation, a linear model captured the stimulus-response relationship for all neurons with high accuracy. 
In contrast with conventional single-whisker stimuli, complex stimuli revealed markedly sharpened receptive fields, largely as 
a result of adaptation. This phenomenon allowed the surround to facilitate rather than to suppress responses to the principal 
whisker. Optimized stimuli enhanced firing in layers 4–6, but not in layers 2/3, which remained sparsely active. Surround 
facilitation through adaptation may be required for discriminating complex shapes and textures during natural sensing.
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RESULTS
Subthreshold stimulus-response model
We performed whole-cell recordings from the barrel cortex of rats 
administered local anesthetics and a sedative, which better approxi-
mate wakefulness than general anesthesia does21. The receptive field 
center or principal whisker (PW) and eight surround whiskers (SWs) 
simultaneously received spatiotemporally complex stimuli (Fig. 1a) 
via piezo-electric actuators that could move in arbitrary angles and at 
speeds up to 2,200° s−1. This system allowed exploration of a greater 
amount of the stimulus space than multi-whisker stimulator systems 
used in previous studies, which were often restricted to motion along 
a single axis18,23. Each of the nine whiskers was stimulated with high-
velocity deflections of fixed temporal structure (5-ms rise and 5-ms 
decay; Supplementary Fig. 1a), mimicking the stick-slip events known 
to occur during natural contact with surfaces7. Deflections occurred 
stochastically in time at a frequency of ~9.1 Hz, similar to natural 
whisking frequencies8, as well as in arbitrary directions (complex 
multi-whisker stimulation; Fig. 1a). Thus, our procedure had natu-
ralistic features while still exploring the stimulus space thoroughly.

We initially investigated models in which responses were a nonlin-
ear function of the stimulus (further discussed below). We ultimately 
found that response variance was best explained by a model in which 
responses were a linear function of the stimulus, but after a nonlinear 
stimulus transform (an input nonlinearity model24). The stimulus, 
initially represented as the x-y positions of each stimulator over the 
last 100 ms (the X-Y representation), was transformed into an eight-
directional representation using 45° bins (Fig. 1b and Supplementary 
Fig. 1a). This new stimulus representation, in which each directional 
bin is an independent stimulus with no explicit relationship to other 
directions, is similar to the sensory transformation that occurs at 

the whisker follicles, where individual primary afferents innervate 
a limited circumference of a follicle and are consequently tuned to a 
limited range of directions25.

Because the stimuli are uncorrelated with regard to whisker and 
time, the relationship between the stimulus and instantaneous mem-
brane potential could be computed as the voltage-weighted average 
stimulus (VWA; Fig. 1c), an intracellular analog of the classic spike-
triggered average stimulus (STA). The VWA yielded the neuron’s filter, 
an estimate of its subthreshold spatiotemporal receptive field, illus-
trated as a matrix of 72 possible spatial dimensions (nine whiskers × 
eight directional bins) by 100 1-ms time bins (Fig. 1c). Its dot product 
with the stimulus vector predicted the instantaneous voltage, which 
could also be used to infer spiking responses (Fig. 1c).

We measured the trial-to-trial variability and spike threshold exper-
imentally for neurons that fired at least one spike during stimulation 
(53 of 86) and predicted the average spiking response by applying the 
appropriate noisy-threshold operation to the VWA (Supplementary 
Fig. 1b). Applying a spike-threshold nonlinearity to the membrane 
potential in the presence of substantial trial-to-trial variability (noise) 
results in an established power law relationship26. The predicted STA 
of the noisy-threshold model (STA′) was, on average, only weakly cor-
related with the actual STA calculated from spikes (0.323 ± 0.242). 
However, many of our neurons fired sparsely throughout the record-
ing (31 of 57 fired < 100 spikes), possibly causing STAs to poorly 
estimate their receptive fields. Indeed, the correlation of STA′ and STA  
was proportional to cells’ firing rates, and was strongest for highly 
active neurons (Fig. 1d and Supplementary Fig. 1b). The VWA there-
fore provides an effective surrogate for the STA and may be used to 
obtain accurate receptive field estimates for neurons in all layers, even 
for those with low firing rates or high noise.
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Figure 1  Reverse correlation of intracellular 
recordings can rapidly and accurately identify 
STRFs. (a) Schematic of the experimental 
setup. Left, barrel cortex neurons were recorded 
intracellularly during complex multi-whisker 
stimulation (sparse noise) to nine whiskers. 
Right, schematic of complex multi-whisker 
stimulation. Arrows represent independent 
deflections of nine whiskers. Deflections 
occurred stochastically in time and direction (any 
of 360°). (b) Nonlinear stimulus representation. 
Whisker movements are represented in an eight 
angle–binned space instead of Cartesian space. 
(c) The VWA of stimulus patterns estimated 
the spatiotemporal filter (K) for an individual 
neuron. The accuracy of the spatiotemporal filter 
was tested by predicting the response of the 
neuron to novel stimuli (cross-validation). The 
filter accurately predicted both the subthreshold 
response of the neuron and the spiking response. 
(d) The relationship between the VWA and the 
STA is plotted as the correlation coefficient (R) 
between the STA′ and the true STA. The STA′ 
is the prediction calculated using the VWA and 
the appropriate noisy-threshold operation. As 
the number of spikes used for STA estimation 
increased, the mean correlation between the  
STA′ and STA became stronger, irrespective of 
laminar location or cell type of the recorded 
neuron. AP, action potential. (e) The speed  
of convergence for the VWA as a function of  
the amount of data used to train the model.  
The plot is on population data; dashed lines  
and shaded areas represent ± 1 s.d.
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Finally, the VWA provides an additional advantage over the STA: 
speed. Under a conservative estimate of 1,000 spikes to accurately esti-
mate receptive fields, most neurons would require prohibitively long 
recording times to produce a sufficient number of spikes. Median fir-
ing rates throughout the period of complex multi-whisker stimulation 
were 0.057 (layer 2, L2), 0.03 (layer 3, L3), 1.01 (layer 4, L4), 0.84 (layer 
5 (L5) slender-tufted), 8.86 (L5 thick-tufted) and 0.02 Hz (layer 6, L6). 
The least active neurons, such as those in L2/3, would require ~7 h of 
recording for STA estimation. In contrast, the VWA converged after 
200 s of recorded data for all neurons, irrespective of laminar loca-
tion, and reached 80% of that estimate within 30 s (N = 86; Fig. 1e).  
Subthreshold estimation is therefore highly efficient, providing in 
minutes a receptive field that would otherwise take hours of spike 
recording. This further allows receptive fields to be determined online 
and immediately played back.

Linearity of cortical responses in S1
We calculated subthreshold spatiotemporal filters for 86 neurons. Model 
accuracy was tested by using the filters to predict neuronal responses 
to novel stimuli not used in filter calculations (cross-validation).  
The linearized model predicted subthreshold responses with an 
average accuracy (R2) of 0.488 ± 0.149 (mean ± s.d.) throughout the 
depths of a cortical column (Fig. 2a). The highest R2 values occurred 
at depths of 500–900 µm (0.513 ± 0.126), corresponding to lower 

L3 and upper L4, and at depths of 1,400–1,800 µm (0.605 ± 0.126), 
corresponding to L6. The worst performance occurred at depths of 
200–600 µm (0.473 ± 0.121), corresponding to L2/3, and at depths of 
1,000–1,400 µm (0.331 ± 0.155), corresponding to L5.

In the visual and auditory systems, L2/3 and L5 have been reported 
to exhibit more nonlinear behavior than L4 (refs. 27,28). The drop in 
model performance in L2/3 and L5 might simply reflect an inability of 
the linearized model to capture such nonlinearity. Alternatively, these 
layers might simply have more variable responses and neural noise. 
Although background synaptic inputs may be behaviorally relevant, 
neural variability is noise with regard to the model and cannot be 
predicted from the stimulus. To determine whether noise accounts 
for the weaker prediction of L2 and L5 activity, we measured the 
trial-to-trial variability of responses (Fig. 2a) to repeated trials of  
identical stimuli (frozen noise; Fig. 2b). This measure estimates  
the fraction of neural response variance attributable to noise, with 
the sensory stimulus driving the remainder, the predictable variance. 
The model captured less response variance in L2/3 and L5, where the  
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Figure 2  Linearized model captures a majority of the predictable synaptic 
input for neurons in all layers of S1. (a) Depth-dependent relationship of 
the model performance and neural variability. Model performance (red), 
defined as the cross-validated prediction of the VWA on trial averaged 
responses, and neural variability (gray), defined as the trial-to-trial 
variability between repeated presentations of identical stimuli, are plotted 
as a function of recording depth for each neuron. There is an inverse 
relationship between the model performance and neural variability in all 
neurons and layers. (b) Responses of a neuron to ten repetitions of the 
same stimulus (gray traces) to illustrate neural variability along with the 
average response (blue) and predicted response (red). The two examples 
correspond to the data points inside red boxes in a, and represent examples 
of neurons with high prediction quality and low variability (top) and low 
prediction quality and high variability (bottom). (c) The model performance 
(R2) tested on single-trial responses using training data (black) and cross-
validation/test data (gray) is plotted against the trial-to-trial variability 
for each neuron. Convergence of the test performance and training 
performance at zero variability was between an R2 of 0.64 and 0.68.
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Figure 3  Model comparison. To verify the superiority of the stimulus-
transformed linear model over other linear and nonlinear models (quadratic 
regression), we compared performance on a subset of neurons (N = 39). For 
the four models, calculated either in the (x,y) space or the eight-dimensional 
stimulus transformed space (8-Dim), we show jitterplots and boxplots of 
the cross-validated prediction, R2. Red lines indicate median values, boxes 
indicate the interquartile ranges, whisker limits represent approximately  
± 2.7 s.d. and red crosses indicate nominal outliers. The linear model  
in the (x,y) space had an R2 of 0.0340 ± 0.0362 and a median value of  
0.0179, and performed significantly worse than the linear model in the  
8-Dim representation (***P < 0.001, t test). The quadratic regression in the 
(x,y) space had an R2 of 0.303 ± 0.155 and a median value of 0.306. The 
quadratic regression in the 8-Dim representation had an average R2 of 0.319 ± 
0.165, a median value of 0.322, and did not perform significantly better than 
the quadratic regression in the (x,y) space (*P = 0.65, t test). The linear model 
in the 8-Dim representation performed significantly better than the quadratic 
(x,y) and the quadratic 8-Dim (P = 0.0113 and 0.0416, respectively; t test) 
and had an average R2 of 0.397 ± 0.167. NS, not significant.
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variability was correspondingly higher, than 
in other layers (Fig. 2a). As a result, the frac-
tion of predictable variance captured by the 
model was not significantly different between 
layers (P = 0.36, ANOVA) and was markedly 
high for all neurons (0.729 ± 0.207).

For each neuron, we plotted the perform-
ance of the model on training data and testing 
data against the trial-to-trial variability (noise) 
of the neuron (Fig. 2c). Extrapolating the 
regressions of both data sets to the y-intercept 
gave the predicted performance of the model 
under conditions of zero noise, here between 
an R2 of 0.64 and 0.68 (Fig. 2c). These metrics, 
although intuitive, are known to potentially 
overestimate trial-to-trial variability and, con-
versely, underestimate performance as a result 
of noise29. However, unbiased estimators29 
yielded a similar upper bound of predictable 
variance of 0.75 ± 0.06 and a lower bound of 
0.58 ± 0.03 (Supplementary Fig. 2).

Prediction by a quadratic model, widely 
used in reverse correlation studies, was 
also checked. Such models should capture 
nonlinear interactions between whiskers.  
Predictions of responses to novel stimuli were calculated for linear and 
quadratic models in the X-Y space or the eight-dimensional stimulus– 
transformed space (n = 39 cells; Fig. 3). The linear model in the 
X-Y space was inadequate (mean R2 = 0.034 ± 0.0362, median =  
0.0179), and the quadratic model performed far better (mean R2 = 
0.303 ± 0.155, median = 0.306). One might interpret this as evidence 
of strong nonlinear interactions between whiskers, but linear models 
are constrained to produce equal and opposite responses along a stim-
ulus dimension (X or Y) and will fail for neurons driven equally by 
opposing directions (for example, 0° and 180°). Indeed, the quadratic 
model given an eight-dimensional representation was not significantly 
better (mean R2 = 0.319 ± 0.165, P = 0.65, t test), demonstrating that 
the main nonlinearity captured here by the quadratic model relates to 
directional tuning, rather than whisker interactions. In fact, the linear 
model in the eight-dimensional representation (mean R2 = 0.397 ± 
0.167, median = 0.398) outperformed the quadratic models (P = 0.01, 
0.04; t tests), suggesting that the linear model is a sufficient and parsi-
monious description of neural responses and that the more complex 

quadratic model is prone to fitting noise. Prediction was unaffected 
by rotating the directional bins of the eight-dimensional representa-
tion, indicating that cardinal directions have no special role in barrel 
cortex coding and that the level of directional discretization used in 
our model is adequate (Supplementary Fig. 3). Furthermore, our 
linear model was successful over a substantial range of whisker deflec-
tion frequencies, demonstrating model robustness across conditions 
(Supplementary Fig. 4). Linear approaches are further appealing, 
being simple to calculate and producing filters (receptive fields) that 
are visually intuitive and biologically interpretable.

Spatiotemporal receptive fields in S1
Having validated the linear model, we analyzed the filters, which 
are an estimate of the spatiotemporal receptive field. For each STRF, 
the time preceding neural activity is represented on the y axis, and 
whisker identities and angles are represented on the x axis (Fig. 4a). 
Metrics such as latency, angular tuning, receptive field size, degree 
of excitation and inhibition, directional consistency of the whiskers, 
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and inter-whisker temporal relationships can 
be extracted from this single plot. Whiskers 
are ordered from whisker 1 (W1) through 
whisker 9 (W9) with the PW in the center. 
Each whisker is represented by eight columns corresponding to the 
eight angle bins (0–45°, 46–90° and so on).

STRFs were normalized for each neuron so the maximum excita-
tory excursion from baseline was red and an equally large inhibitory 
excursion would be blue. The example neuron (Fig. 4a) responded 
predominantly to five whiskers, the PW, W2, W4, W6 and W1, in 
that order, and weakly to W3. The tuning for the PW and W2 was 
broad, peaking at 270° and 180°, respectively. Conversely, W1, W4 
and W6 had comparatively sharper tuning, with peaks at 270°, 225° 
and 90°. The vector strength for these five whiskers, a measure of 
the consistency of preferred directions across whiskers, was 0.48  
(0 = no consistency, 1 = perfect consistency). Subtle timing differences 
suggested that the best combination of stimuli for this neuron would 
be to move W1, W2 and W6 simultaneously, followed 2 ms later by 
the PW and W4.

We examined the STRFs for all neurons that could be unambigu-
ously identified morphologically and classified according to cell type 
and laminar location (N = 71). Cells were classified into six excitatory 
types: L2 (N = 9), L3 (N = 14), L4 (N = 13), L5 slender-tufted neurons 
(L5st, N = 16), L5 thick-tufted neurons (L5TT, N = 11) and L6 (N = 8)  
(Fig. 4b). Simple single-whisker receptive fields were seen pre-
dominantly in L4, L3 and L6, whereas more complex multi-whisker 
receptive fields were seen in L2, L5st and L5TT. Strong inhibition was 

seldom seen and inhibitory excursions were generally weaker and 
longer lasting than excitatory excursions.

STRFs were averaged according to layer and cell type. To our 
surprise, the PW was overwhelmingly the strongest stimulus for 
neurons in all layers (Fig. 5a), and the temporal structure of the 
receptive field was similar across neurons and layers (that is, low 
rank; Supplementary Fig. 5). This contrasts starkly with previ-
ous reports of ubiquitous broad subthreshold responses spanning  
multiple whiskers1–4. Previous studies, however, inferred recep-
tive field size by overlaying the activity measured from individual  
whiskers stimulated in isolation with substantial intertrial intervals1–5.  
STRFs of neurons calculated from such conventional, sequentially 
presented single-whisker stimuli (Fig. 5b) were markedly different 
from STRFs obtained using complex stimuli (Fig. 5a). In particular,  
STRFs measured using simple stimuli were broad in all layers,  
especially for L2 and L5TT cells, as observed previously1,2, but  
unlike STRFs for complex stimuli.

Complex multi-whisker stimuli shrunk STRFs, both in the number 
of whiskers eliciting responses (Fig. 5c) and the fraction of response 
power accounted for by the surround (Fig. 5d). Asymmetric surrounds, 
potentially resulting from asymmetric cross-whisker inhibitory 
effects11,12, were absent in complex stimulus filters (Supplementary 
Figs. 6 and 7). Response onset latencies were similar for simple versus 
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Figure 5  Complex stimuli reveal markedly 
sharpened receptive fields relative to 
conventional stimuli. Population-averaged 
STRFs were calculated for neurons of the 
same cell type. (a) Population STRFs based on 
complex multi-whisker stimuli. (b) Population 
STRFs simple single-whisker stimulation for 
the neurons shown in a. (c–h) Receptive field 
properties for complex (black) versus simple 
(gray) stimuli (*P < 0.05, **P < 0.01,  
***P < 0.001; TL, P < 0.1; all tests were  
non-parametric two-sided rank-sum test).  
Data are presented as means ± s.e.m.  
(c) Adapted STRFs had significantly fewer 
responsive whiskers than unadapted STRFs. 
(d) For adapted STRFs, the total fraction of 
the response power contained in the surround 
receptive field was significantly less than that 
in unadapted neurons. (e) Onset latency of 
the receptive field (usually, but not always, 
the onset of the PW response) was unchanged 
between groups. (f) The average latency between 
the onset of the PW response and the mean 
onset of the SW responses was shortened for 
adapted STRFs and was significant in L2  
(P < 0.05, t test). (g) The vector strength, a 
measure of coherence or directional similarity 
between significantly responsive whiskers, was 
highest in infra- and supra-granular layers,  
but was unchanged between simple stimuli  
and complex stimuli (0 anti-coherent,  
1 perfectly coherent). (h) Directional tuning 
of the PW, defined as strength of response to 
the preferred direction divided by the summed 
response to all directions, was always higher 
during complex stimuli, but results were not 
significant (0.125 = no tuning preference;  
1.0 = tuned to a single direction).
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complex stimuli (Fig. 5e). On the other hand, complex stimuli predict 
that neurons’ maximal responses should result from PW deflections 
lagging surround deflections by only a few milliseconds (Fig. 5f). This 
timescale mirrors instances of facilitation seen previously in minori-
ties of cells16,17. The consistency of preferred directions across sig-
nificantly responsive whiskers was moderate in all layers (Fig. 5g)6. 
Directional correspondence of center and surround whiskers spanned 
a broad range, indicating that neurons are not exclusively tuned to 
correlated or antagonistic surrounds (Supplementary Fig. 7c). PW 
directional tuning was sharpest in deep layer neurons, particularly 
L5TT and L6, yet unaffected by the use of simple versus complex 
stimuli (Fig. 5h).

Facilitatory surrounds through adaptation
Although simple single-whisker stimuli are brief isolated events, complex  
multi-whisker stimuli engage the whiskers in a sustained and con-
tinuous fashion. Adaptation to sustained stimuli could potentially  
explain the reduction in receptive field size seen during complex 
multi-whisker stimulation. To examine the underlying membrane 
potential dynamics involved in the adaptation process, we averaged 
responses of neurons across many trials of complex multi-whisker 
stimuli (Fig. 6a). Trial-averaged responses showed clear stimulus-
onset transients and tonic sustained depolarizations of 1–5 mV  
for all neurons and layers (Fig. 6b). Both PW and SW deflections 
at the beginning of a trial induced large depolarizations relative to 
baseline (Fig. 6c). As the neuron adapted to the stimulus and reached 
a steady state in the mean membrane potential, both the PW and  
SW postsynaptic potentials (PSPs) became smaller, and SW PSPs  
were often no longer able to drive responses above the steady-state 
voltage (Fig. 6c). SW responses adapted far more than PW responses 
(PW: 9.02 ± 4.98 versus 6.23 ± 3.62 mV, SW: 3.06 ± 2.64 versus  
0.811 ± 0.526 mV; Fig. 6d), leading to the overall sharpening of the 
receptive field (Fig. 5).

To examine how adaptation might affect multi-whisker integration, 
we played back predicted optimal stimuli to a subset of neurons. The 
combination of whiskers, angles, and times predicted to drive the 
maximal peak response was determined from on-line calculation of 
the STRF (Online Methods). We delivered the optimized pairwise 
(best two whisker) combination of whisker deflections as well as the 
optimized multi-whisker combination to the neurons in the absence 
of background stimuli (unadapted) and embedded in our otherwise 
random complex stimuli (adapted) (Fig. 7a,b). We then checked 
whether responses could be predicted by the sum of responses to 
individual whisker deflections. Consistent with previous studies15, 
unadapted responses to both pairwise and multi-whisker optimized 
stimuli added sublinearly (P < 0.0001 for both, sign test; Fig. 7c). 
Responses were, however, significantly more linear in the adapted 

state (P < 10−5 for pairwise, P = 0.005 for multi-whisker, comparison 
of slopes test). Summation of pairwise stimuli was highly sublinear 
before adaptation (slope = 0.346, r = 0.738), but more linear under 
adapted conditions (pairwise, slope = 0.723, r = 0.506). Responses 
to optimized multi-whisker deflections also showed greater linearity 
after adaptation (multi-whisker; adapted: slope = 0.491, r = 0.631; 
unadapted: slope = 0.223, r = 0.442).

Approximate linearity as a result of adaptation suggests that sur-
round inputs should enhance the response of the neuron to the PW 
alone, despite surround suppression observed in barrel cortex neurons 
during conventional stimulation8,11,12,30,31. To examine the degree to 
which the surround was facilitatory versus suppressive, we compared 
the PSP responses of neurons to pairwise and multi-whisker stimuli 
versus PW stimulation. In the adapted state, responses to pairwise  
stimuli were 1.33 ± 1.15–fold greater than to PWs alone (pair-
wise, P = 0.002, sign test; Fig. 7d). When neurons were unadapted,  
however, responses to pairwise stimuli were only 0.895 ± 0.373 times 
the amplitudes of responses to PWs alone (P = 0.002, sign test). For 
the optimized multi-whisker stimuli, the surround inputs facilitated 
the response in the adapted neuron by a factor of 1.28 ± 0.43 (multi-
whisker, P < 10−9, sign test), but suppressed activity in unadapted 
neurons by a factor of 0.893 ± 0.269 (P = 0.36, sign test). This transi-
tion from a suppressive surround to a facilitatory surround during 
adaptation occurred for neurons in all layers and was independent of 
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trial averaged response of a neuron over 300 unique trials of complex 
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strong stimulus transient and tonic depolarization that was dependent 
on stimulus onset. (b) Comparison of the mean Vm at stimulus onset and 
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the five epochs indicated by the arrows. The trial averaged response is 
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how closely the preceding surround deflections (not involved in the 
optimal stimulus) occurred, as well as the number of SWs deflected 
(Supplementary Fig. 8).

Spiking output followed a pattern similar to subthreshold input 
(Fig. 8a). Of 33 neurons presented with both single-whisker  
and optimized stimuli, only half ever fired spikes (4 of 17 L2/3,  
6 of 9 L4 and 7 of 7 L5/6). Of those that responded to both types of  
stimuli, adaptation significantly facilitated spiking by a factor of  
1.78 ± 1.04 and unadapted conditions weakly suppressed or did not 
facilitate spiking (0.85 ± 0.3, P = 0.02 and 0.30, respectively; sign 
tests; Fig. 8b). Neural adaptation therefore allows surround inputs to 
become facilitatory in S1, whereas they remain suppressive when the 
neuron is unadapted. Moreover, although optimized multi-whisker 
stimuli were able to increase firing rates of adapted L4 and L5/6  
neurons, firing in L2/3 was not driven by optimized stimulus playback 
(Fig. 8c), suggesting that coding in the superficial layers in particular 
is not purely tactile.

DISCUSSION
Spatiotemporal receptive fields of barrel cortex neurons have been 
largely enigmatic. Nevertheless, pioneering studies of spatial and tem-
poral interactions have uncovered substantial surround suppression, 

depending on the combination and sequence of whiskers and their 
directions of movement11. Subsequent studies by multiple groups 
parametrically exploring two-whisker deflections have repeatedly 
confirmed suppressive interactions17,32–34. However, although sur-

rounds are normally suppressive for pairs of 
whisker deflections at low frequency, high-
frequency stimulation can reveal facilitation 
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in 19% of neurons17, and even short sequences of whisker deflections 
(that is, PW-SW-PW) can ‘suppress suppression’33. This weakening  
of suppression is consistent with the transition that we observed 
as neurons adapted to stimuli and surrounds became facilitatory. 
Moreover, by playing back optimized multi-whisker stimuli, we 
found that facilitation may in fact dominate over suppression during  
sustained stimuli.

A recent study deflecting 24 whiskers along the rostrocaudal axis 
found that the relative directions of center and surround movements 
also affect activity. Specifically, discharges of ~15% of recorded neu-
rons are enhanced by deflecting the center whisker in the same direc-
tion or opposite direction of the surround23. Indeed, we observed some 
neurons strongly tuned to correlated or anticorrelated surrounds, but 
our data, based on 360° of movement, also reveal a broad spectrum of 
center-surround relationships (Fig. 4 and Supplementary Fig. 7c).

Reverse correlation in S1
Our linear STRF model captured the correct subthreshold stimulus- 
response relationship for neurons in all cortical layers (Fig. 2). 
Sensory physiology has a long history of studying spiking receptive 
fields by reverse correlation using both linear models and linear- 
nonlinear Poisson models. The combination of intracellular record-
ings and our stimulator system allowed us to extensively sample the 
stimulus space and map STRFs for neurons spanning the depths of an 
S1 cortical column. Our simple linear model of the stimulus-response 
relationship was able to account for 73% of predictable synaptic input 
after an appropriate stimulus transformation. Our data suggest that 
neurons receiving substantial background synaptic input, particularly 
in L2 and L5, are the most difficult to predict (Fig. 2a,d). Isolating 
the neural noise from the predictable component of the responses 
revealed that the linear model works equally well across layers. Thus, 
nonlinear interactions cannot necessarily be inferred from poor  
overall linear model performance, which may reflect high levels of 
neural noise in specific cell types.

The accuracy of our linear model could be partially a result of 
our re-representation of stimuli in a manner similar to their natural 
encoding at the periphery and by central synapses. In the whisker 
system, primary afferents initially encode direction and space using 
discrete clusters of mechanoreceptors around a limited circumference 
of individual whisker follicles25. Relatively labeled lines maintain this 
code from the periphery to the cortex35–37. We represented direction 
in 45° bins, similar to the half widths of neurons’ directional tun-
ing curves. With a standard Cartesian representation of direction 
instead, prediction would require a nonlinear model simply because 
many neurons respond equally well to opposite directions of motion, 
whereas linear models using Cartesian representations require oppo-
site responses to opposing motions. Linear sensory integration is 
consistent with active synaptic inputs being spatially or temporally 
distributed across dendritic arbors38,39. Models of other sensory 
modalities may benefit from finding analogous stimulus representa-
tions encoded by presynaptic inputs in which the stimulus-response 
relationship can be estimated using linear methods24.

Another contributor to the model’s accuracy is likely our use of 
intracellular recording, which reveals additional information nor-
mally masked by the spike generation nonlinearity and removes noise 
inherent therein. An intracellular study of auditory cortex using a 
reasonable stimulus transform found that linear models performed 
poorly, predicting, on average, only 11% of subthreshold response 
variance40, and a similar spike-based study captured ~19% of supra-
threshold response variance29. It remains unclear how to compare 
the percentage of predictable variance explained by a subthreshold 

model to that by a suprathreshold model. Although subthreshold 
receptive fields may seem irrelevant, as information is propagated by 
spike output rather than subthreshold input, ultimately, the stimulus 
driving the maximal synaptic input is the same stimulus driving spike 
output. To the extent presently known, spike output is a power law 
function of synaptic input26. Indeed, our VWAs correlated well with 
actual STAs when adequate numbers of spikes were available (Fig. 1 
and Supplementary Fig. 1).

Finally, our stimuli were purposefully chosen to mimic the high-
velocity events common during natural whisking and thought impor-
tant for sensation7,34,41. Although naturalistic in their kinematics, 
these stimuli were stochastic (white) with regard to space, direction 
and time, sampling unbiasedly along potentially important stimu-
lus dimensions while keeping data collection and analysis tractable. 
Models built using white-noise stimuli can be poor predictors of 
responses to natural visual scenes, which contain strong spatial cor-
relations42. Strong correlation of neighboring whiskers is not apparent 
from videography of rats during sustained contact with textures7, but 
initial encounters with an object may induce substantial spatial and 
temporal correlations, such as arc contacts being near synchronous 
and row contacts being sequentially ordered. Object shapes could 
further contribute to such correlations. Studies of possible high-order 
correlations during natural whisking, which might necessitate the use 
of nonlinear models, are needed.

Coding in barrel cortex
Rodents repetitively sweep all of their whiskers back and forth across 
surfaces when exploring their environments7,8. We found that a major 
consequence of sustained multi-whisker input during natural whisk-
ing is the marked sharpening of receptive fields in spatial extent and 
the tightening of the temporal latencies between whiskers (Fig. 5). For 
example, L5TT pyramidal neurons were equally well driven by most 
whiskers when mapped with conventional single-whisker stimuli, as 
noted previously2,5, but became highly focused on the PW during 
complex stimuli. In fact, identifying the PW of this cell type is very 
difficult using only single-whisker stimuli. The switch in coding with 
repetitive whisking may be especially important for corticofugal cells 
such as those in L5 that signal numerous subcortical, behaviorally 
relevant structures (that is, thalamus, striatum, spinal cord, brainstem, 
superior colliculus).

Similar laminar analyses of visual cortex showed that thalamor-
ecipient layers, such as L4 and L6, possess simple receptive fields 
reminiscent of their thalamic inputs27. Recently, we discovered that 
thalamocortical synapses converge even more densely onto L5TT 
neurons than L6 cells43, but the L5TT STRFs that we observed looked 
nothing like those in L6. This likely reflects local, rather than tha-
lamocortical, circuit differences between the two layers. This disparity 
also underscores the challenge in inferring connectivity from recep-
tive fields and vice versa.

In contrast with L5, coding in superficial layers has been par-
ticularly difficult to study23. This stems from the sparse activity in 
L2/3 under a variety of conditions5,20,22,43. Conceivably, the effective 
stimuli for L2/3 barrel cortex neurons have been previously missed. 
Our study is, to the best of our knowledge, the first able to explore a 
large stimulus space for L2/3 despite its seemingly low firing rates. 
We observed that optimized stimuli for activating synapses onto L2/3 
cells were very similar to those for other, more robustly spiking layers 
(Fig. 5a), but still did not reliably drive L2/3 to threshold (Fig. 8c).  
Impoverished stimuli are therefore unlikely to explain previous 
reports of sparse firing in L2/3. The activity of L2/3, rather than  
being highly selective for stimuli, may be gated by top-down and/or 
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neuromodulatory inputs present only during active behavior44 or may 
be a sparse coding system under all conditions.

The role of surround receptive fields
Complex stimuli induced a tonic depolarization in all layers (Fig. 6).  
Further studies are needed to determine whether this reflects the 
number of whiskers stimulated or a general activation of the cortical 
network. During these depolarized steady-state conditions, all whisk-
ers evoked smaller PSPs than at stimulus onset. Counterintuitively, 
the surround receptive field under steady-state conditions facilitated 
responses to the PW, contrary to the well-established surround sup-
pression observed in numerous studies of barrel cortex11–15. Surround 
suppression between pairs of whisker deflections at fixed latencies does 
not derive from hyperpolarizing or shunting inhibition32,45, but rather 
reduces synaptic input. Synaptic depression at the thalamocortical and 
corticocortical synapses, as well as reduced cellular driving force, may 
contribute to this adaptation46,47. 

Our results not only confirm such observations regarding initial 
transient responses, but also demonstrate that persistently adapted con-
ditions render the integration of whisker inputs more nearly linear rela-
tive to unadapted conditions, allowing surround facilitation (Fig. 7).  
Stimulus-dependent linearization has been observed in subthreshold 
responses of visual cortical neurons48 and may be a ubiquitous feature 
of cortical processing. Finally, the sufficiency of a linear model for nine 
whiskers moving in 360° suggests that spiking models predicting activ-
ity evoked by rostrocaudal movements of two individual whiskers34 
may scale to many whiskers and directions. Incorporating adaptation 
in those spiking models was critical for accurate prediction. Linear 
models of barrel cortex may benefit from incorporating such history 
dependence, perhaps especially for arbitrary and natural stimuli.

Ethologically, adaptation may cause neurons to transition from 
simple stimulus detectors to discriminators of stimuli3,49,50. Indeed, 
adaptation enhanced the acuity of individual neurons (Fig. 5). In 
addition, adaptation allowed multi-whisker stimuli to more effectively 
drive responses than the PW alone (Fig. 8). Such effects may permit 
neurons in S1 to discriminate objects during active tactile explora-
tion employing multiple whiskers, yet still serve as indiscriminate 
detectors of salient stimuli when not actively exploring. Adaptation 
induced by repetitive whisking might be required to classify object 
shapes and textures. Behavioral studies examining the effect of  
adaptation on detection versus discrimination are needed.

Conclusion
By exploiting additional information available from intracellular 
recording, we were able to explore the sensitivity of neurons to stim-
uli varying in space, direction and time by reverse correlation. Our 
results demonstrate that a linear model, given an appropriate stimulus 
transform, accounts well for the predictable subthreshold activity in 
rat barrel cortex. This method revealed STRFs an order of magnitude 
faster than conventional spike-based techniques, even for neurons 
firing few or no spikes. These STRFs differ starkly from receptive 
fields based on conventional stimuli. The surround receptive field, 
long thought to be predominantly suppressive, becomes facilitatory 
during more natural conditions.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animal preparation and physiology. All procedures were approved by the 
Columbia University Institutional Animal Care and Use Committee. 40 adult 
female (weight = 130–340 g, mean = 210 g) Wistar rats (Hilltop Laboratories) 
were used. During surgery, animals were deeply anesthetized with isoflurane 
(1–3% in O2), and body temperature was maintained at 37 °C by a heating blan-
ket. Eyes were coated with lubricating ointment to prevent drying. Cannulae were 
inserted into the trachea (for mechanical ventilation), left femoral artery (for 
blood pressure monitoring) and right jugular vein (for drug infusion). A metal 
post for stabilizing the head was attached to the skull by dental acrylic. Screws 
were inserted in the right frontal and parietal bones for electrocorticogram (EEG) 
recording. Small (~0.5 × 0.5 mm) craniotomies were made over left barrel cortex 
and the dura removed. The acrylic was extended around the craniotomies to cre-
ate a well for retaining artificial cerebrospinal fluid (ACSF; 135 mM NaCl, 5.4 mM 
KCl, 1.8 mM CaCl2, 1.0 mM MgCl2 and 5.0 mM HEPES, pH 7.2). Bupivacaine 
was applied to cannulae incisions and the scalp surrounding the acrylic and  
reapplied periodically.

For neural recordings, isoflurane was discontinued and the rat was maintained 
in a lightly narcotized state by intravenous infusion of fentanyl (~10 µg per kg of 
body weight per h). To prevent spontaneous whisker movement, neuromuscular 
blockade was induced with pancuronium bromide (1.6 mg per kg per h), and the 
animal artificially respired (90–100 breaths per min) using a positive-pressure 
ventilator. A computer continuously monitored electrocorticogram, mean arterial 
pressure (MAP), arterial pulse rate and tracheal airway pressure. Experiments 
were terminated if these indicators could not be maintained within normal  
physiological ranges.

Craniotomies were mapped extracellularly to identify the underlying barrel. 
Glass pipettes with tips of ~5-µm inside diameter were filled with ACSF and 
inserted vertically to a microdrive depth of 700–1,000 µm. Signals were amplified, 
band-pass filtered at 0.3–9 kHz, and played over an audio monitor. Whiskers were 
deflected manually using hand-held probes to determine the PW corresponding 
to locations in a craniotomy.

Patch pipettes were pulled from 2-mm unfilamented borosilicate glass. Tip 
inside diameter was ~0.5–1 µm. Pipettes were tip-filled with 135 mM potassium 
gluconate, 10 mM HEPES, 10 mM sodium phosphocreatine, 4 mM KCl, 4 mM 
ATP-Mg, 0.3 mM guanosine triphosphate and 0.4% biocytin (pH 7.2, osmolar-
ity ~300). Cells were searched for blindly in voltage-clamp mode using pulses. 
Whole-cell recordings were made in Bridge mode and digitized at 32 kHz. Seal 
resistance was >1 GΩ, access resistance was 5.2–51.5 MΩ (mean of 26.3 MΩ), 
and spike height and overall membrane potential (Vm) were stable throughout 
the recording. No holding current was used. Pipette capacitance was neutralized 
before break in. A large ground shield was placed between the electrodes and 
whisker-stimulator system to minimize stimulus artifact.

Histology and morphological analysis. After recordings, the rat was deeply 
anesthetized with sodium pentobarbital (50 mg ml−1) until a drop in MAP and 
desynchronization of EEG was observed. Rats were perfused transcardially with 
cold 0.1 M sodium phosphate buffer followed by 4% paraformaldehyde (wt/vol, 
in 0.1 M buffer). Barrel cortex was cut tangentially in 100-µm vibratome sections. 
Sections were stained for cytochrome oxidase and then biocytin. 71 cells were 
recovered and could be unambiguously identified morphologically. Cells were 
classified as barrel- or septal-related and by layer according to methods described 
previously43. Example cells were reconstructed using a Neurolucida system with 
a 40×/1.3 NA oil-immersion objective.

Stimulus presentation. Whiskers were trimmed to a length of ~10 mm.  
Nine multi-directional piezoelectric stimulators were used to deflect individual 
whiskers. After mapping the barrel identity, the nine stimulators were arranged 
around the face so that the stimulator corresponding to the PW was located 
at the center and the remaining eight stimulators occupied the immediate  
surrounding whiskers. The opening of a stimulator was slipped over the whisker 
and positioned at ~7 mm from the base of the hair.

Two different stimulus protocols were used to probe whisker responses:  
a complex multi-whisker stimulus protocol and a simple single-whisker  
stimulus protocol. Complex multi-whisker stimulus trials lasted 1,000 ms with 
a 1-s intertrial interval. The nine whiskers moved simultaneously and continu-
ously in random directions in any of 360° (1° resolution) and at random times as 

a Poisson process with a mean rate of 10 Hz during non-refractory periods, with 
a refractory period after each pulse initiation of 10 ms (the length of each pulse). 
This made the actual pulse rate on each whisker ~9.1 Hz. All pulses followed the 
same trajectory of velocity versus time with maximum speed of 2200° s−1 and 
a maximum excursion of 850 µm (~7°). The pulse was a symmetric parabolic 
movement with a 5-ms rise, no hold, and 5-ms fall.

During each trial of simple single-whisker stimuli, one of the nine whiskers 
was selected randomly and moved in one of the eight cardinal directions with 
ramp-and-hold movement having a total amplitude of 850 µm (~7°), rise time 
of 10 ms, a hold of 200 ms, and decay time of 10 ms. Trials lasted 500 ms with 
a 1-s interval between consecutive trials. Each whisker and angle combination 
occurred at least ten times, resulting in a total of 720 trials.

Receptive field mapping. Data were analyzed using custom-written MATLAB 
(Mathworks) routines running on an 8-core Linux server with 64 GB RAM.

Whole-cell recordings were preprocessed before calculating the STRFs. Action 
potentials were removed by linearly interpolating between the points just before 
and just after the action potential, and a median filter (200 ms) was subtracted 
to remove slow changes over the course of the experiment resulting from  
fluctuations in the animal’s state or network dynamics. The trace was then  
zero-meaned.

Standard reverse correlation, applied in a nonlinearly transformed stimulus 
space, was used to map receptive fields to complex multi-whisker stimuli. The 
stimulus ensemble s was transformed from an (x, y, t) representation to a binned 
polar representation (d1, d2,…, d8, t). Specifically, stimulus pulses occurring in 
each of the full 360° were re-encoded in 45° bins (Supplementary Fig. 1a) where 
z is the stimulus in the new eight-dimensional representation. This transform 
roughly approximates the transformation occurring at the whisker follicle.

The subthreshold stimulus response function of the neuron can then be 
described using the following linear model

v t k z bT
t t( ) = + +

 
ε

The model gives the expected instantaneous voltage of the neuron, v(t), at  
time t given the (transformed) stimulus that occurred before the voltage  
response, zt


. The stimulus is passed through a spatiotemporal filter, 


k, and has an 

offset and noise added, b and εt, respectively. The vector zt


 represents the stimulus 
movements that occurred in all nine whiskers over the 100 ms preceding the volt-
age response. Only steady-state (adapted) responses were modeled.

Note that each whisker is represented with eight-directional dimensions, 
making the spatial dimensionality of the stimulus segment 72, and the temporal 
dimensionality 100. Thus, the stimulus segments preceding each voltage response 
can be described as a matrix of size 100 × 72, which is vectorized to obtain a 
stimulus vector zt


, which is size 7,200 × 1. Because both the voltage and the 

stimulus are zero-meaned, the offset b becomes zero.
The parameters for the spatiotemporal filter 


k  can be estimated in general 

using linear, ordinary least-squares, multiple regression.
 
k ZZ Z vT T= −( ) 1

Z is a matrix whose columns are the vectors zt


 for each time t, and is therefore 
dimensionality [N × 7,200] where N is the number of 1-ms time bins of data. The 
vector 


v  is a column vector that contains the voltage observation at each time t, 

and is size [N × 1]. Because our stimulus is binary with respect to the presence 
of absence of a stimulus and the movements between whiskers and angles are 
uncorrelated, the stimulus prior (ZZT) can be approximated as proportional to the 
identity matrix. The filter 


k  is therefore easily calculated as the voltage-weighted 

average (the reverse correlation estimate)

 
 
k

N
z v t

t
t= ∑1 ( )

where N is the total number of voltage observations. Rank-reduced regression 
approaches, which place stronger priors on the form of the filter 


k  and should 

lead to stable estimates given less data, did no better (see below).
To test the accuracy of the model we used the spatiotemporal filter, 


k ,  

to predict activity of the neuron to novel stimuli (cross-validation). We first 
trained our model on 300 trials of unique complex multi-whisker stimuli.  
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We next tested the model on the trial averaged response to ten trials of unique 
stimuli, averaged over ten stimulus presentations (frozen noise). The rationale 
here is to train the model on as general a stimulus as possible, but test it on as 
‘noise-free’ a neural response as attainable. In addition, the frozen noise approach 
allows estimation of the predictable variance of a neuron, varp.

r
trial trial

trial triali
i

i
p=

〈 〉
× 〈 〉











cov
var var

var
( , )

( ) ( )
==

−=
∑
i

n
ir

n1

2

1

As well as the noise variance varn.

var varn p= −1

where the brackets 〈〉 represent an average over the trials, the subscript i denotes 
the response of the ith trial of frozen noise (i = 1,…, 10), and the notation cov 
refers to covariance, and n is the number of trials of frozen noise (10). For covari-
ance and variance calculations, expectations are with respect to time. A similar 
calculation can be made for the average signal power and the average noise power 
in the response29.

To calculate STRFs using simple single-whisker stimuli, we used the conven-
tional approach (forward correlation), taking the average zero-meaned voltage 
response for 100 ms following each possible stimulus presentation (nine stimula-
tors × eight angles = 72 possible stimulus presentations). Each average voltage 
response corresponds to the equivalent of a single column in the STRF and the 
72 responses were assembled in appropriate order.

To predict the STA from VWA, the STA′ (Supplementary Fig. 1), we  
first measured the mean spike threshold and mean Vm variance of each  
neuron that fired at least one action potential during recording. Threshold was  
determined by detecting large changes in dV/dt, indicative of spike onset.  
Vm variance was calculated from ten trials of frozen noise. The actual stimuli 
were projected through the VWA to predict subthreshold responses to the 300 
trials and added to temporally correlated Gaussian noise that matched the cell’s 
true variance. When the modeled response passed threshold, a binary spike  
followed by a 10-ms refractory period was recorded. This spike train was then 
used to produce the STA′. For additional simulation trials, new random stimuli 
were generated.

Quadratic model. The subthreshold stimulus response function of the neuron 
can be described with the following quadratic model

v t z Az k z bT
t t

T
t t( ) = + + +

    
ε

where zt


, 

k , b and εt, represent the same as above. The matrix A represents 

an additional quadratic term, where off-diagonal values can be thought of as 
pairwise interactions of all whiskers across times, and has dimensionality 7,200 
× 7,200. As above, the quadratic model is fit using regression analysis. Because 
the dimensionality of parameters in the quadratic model is high, the quadratic 
model is prone to overfitting. We therefore initially reduced the dimensional-
ity of the stimulus space by performing voltage-weighted covariance analysis 
(VWC), an analog of classic STC. The stimulus is weighted by the voltage and 
then a PCA-like analysis is performed which identifies dimension (eigenvectors) 
which account for the majority of the variance in responses. Significant positive 
and negative eigenvectors are then used to filter the stimulus. Regression analy-
sis was then performed on the filtered subspace. This significantly reduced the 
dimensionality of the analysis, allowing for more efficient estimates that are less 
prone to overfitting.

Separability and shared structure. Supplementary Figure 5 decomposes the 
receptive field of each neuron into temporal and spatial (whisker) basis compo-
nents. Each receptive fields is characterizable by the ‘rank’, the number of basis 
components required to reconstruct the receptive field (a separable receptive field 
has rank one). To fit a rank R receptive field, we followed the method proposed in 
ref. 24 with the voltage response of each neuron modeled as a linear function of 
temporal and spatial features of the binned input. We re-wrote the linear model 
of the voltage response

v k zt T t( ) =
 

as (for each neuron, indexed by i)

v q Z ai
t

r

R
i
r

i
t

i
r( ) ( ) ( ) ( )=

=
∑

1

 

where v(t) is the voltage response of neuron i at time t. zt


 is reshaped into Z(t), 
a matrix version of the stimulus (100 × 72, generally L lags by P features),  
and indexed to correspond to the binary stimulus at each time for T time steps. 
We ignore bias for notational convenience, but a bias term is included in the 
analysis.

The desired rank R of each individual receptive field is specified in advance. 
The set of vectors 


qi
r( ) and 


ai
r( )  for r = 1…R are, respectively, the temporal and 

spatial basis components for the neuron i. These vectors are equivalent to the 

receptive field represented in 

k  with 

r

R
r r Tq a

=
∑

1

 ( ) ( )
yielding the rank R voltage 

weighted average of L lags by P features. Our empirical analysis showed that  
R = 1…3 is adequate (see also Fig. 4) to capture the full receptive field for each 
of the neurons analyzed (Supplementary Fig. 5). See also ref. 51 for related 
results.

The shared structure of temporal basis components can also be leveraged to 
estimate the receptive fields using less data (a regularization) by sharing infor-
mation across neurons. To fit the separable receptive field model for all neurons 
jointly while enforcing shared components (


qi
r( )  and 


ai
r( ) for r = 1…R, and  

i = 1…N), we alternate between the following convex optimization problems

min || || ||( ) ( )
Q i

N
i i

T

r
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i
t

i
r

F qv q Z a Q
= =
∑ ∑−
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A i
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i
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i F av q Z a A
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
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
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

+
1 1

2 
  

l reshapeed *||
  

where 

qi and 


ai  are the vectors formed by concatenating 


qi
r( ) and 


ai
r( ) vertically 

over r = 1…R, and Q and A are the matrices formed by concatenating vectors  
qi  and 


ai  horizontally over neurons i = 1…N (such that Q has dimensions  

(L × R) by N and A has dimensions (P × R) by N). Qreshaped is a reshaped  
matrix Q with dimensions L by (N × R). Areshaped is a reshaped matrix A with 
dimensions angles by (whiskers × N × R). λq and λa are tunable parameters  
specifying the extent to which the neurons share a basis, fit by cross-validation 
here. The nuclear norm penalty ||·||* is a convex relaxation of the rank of the 
matrix52 and therefore enforces low rank structure. Applied here, this penalty will 
enforce that the temporal components across neurons will be shared. We similarly 
regularize for appropriate components in Areshaped which enforces a shared basis 
of tuning to different stimulation angles across whiskers and neurons. To solve 
this penalized problem, we alternate between objectives (in the style of alternating 
least-squares), using the alternating direction method of multipliers53 to solve 
each regularized subproblem.

The resulting solutions Q and A correspond to the receptive fields, and due to 
the pooling of information across neurons, the receptive fields can be fit much 
better when less data is available than they could if they were fit independently. 
For example, when the VWAs are fit in a particularly low data regime (5-s worth 
of data per neuron), they are underfit and perform poorly when used to predict 
voltage. In this regime, the R = 1 regularized model improves the prediction qual-
ity dramatically (increasing the correlation on average by a factor of almost 2).

Analysis of receptive field properties. To estimate significant whisker responses, 
99% confidence limits on noise were calculated using a selected portion of the 
STRF representing spontaneous background activity (the first 5 ms of each STRF, 
for all whiskers and directions). Whisker responses exceeding these limits were 
deemed significant. Surround power was defined as the power contained in the 
SWs over the total power contained in the receptive field. Power was calculated 
as the average square deviation from the mean over the full STRF.

Onset latency was defined as the first time the receptive field exceeded  
these 99% confidence limits. Surround latency was defined as the average latency 
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difference between the PW and the significantly responsive SWs. Surround 
latency was not calculated for neurons lacking significantly responsive SWs.

The preferred direction for a whisker was defined as the direction with largest 
STRF time-peak response. For the vector strength calculation, the preferred direc-
tion for each significantly responsive whisker is first represented as a unit-vector 
(length 1) in the appropriate direction. Each significantly responsive whisker is 
thus given equal influence in the calculation of the vector strength. The vector  
strength is then calculated by taking the algebraic mean of the unit vectors.  
A vector strength of 1 signifies that all unit vectors are aligned, or coherent, and a 
vector strength of 0 signifies that unit vectors are anti-coherent and cancel out.

The mean PW directional tuning was defined as the strength of response (peak 
value) to the preferred direction of the PW divided by the summed strength of 
the PW response to all directions. Tuning can take on values anywhere from 
(0.125–1), where a 1 indicates that all of the response is contained within the 
preferred direction and a value of 0.125 indicates a flat tuning curve where all 
values are preferred equally.

Average STRFs for each layer (Figs. 4 and 5) were plotted with the PW in  
the middle. SW identities were always the same with respect to the PW, that is, 
SW2 and SW8 were always in the same arc as the PW, whereas SW4 and SW6 
were always in the same row as the PW. PW tuning was always shown with the 
preferred response in the middle bin (180–225° in Fig. 5a,b), and the tuning 
curves, or polar plots, were shifted accordingly.

Stimulus playback. For stimulus playback experiments, STRF of complex multi-
whisker stimuli were calculated online and significant whisker responses were 
determined as above. The best combination of whiskers, times and angles was 

defined as the combination that produced the largest peak voltage response. This 
combination was extracted from the STRF, for both pairwise stimuli and multi-
whisker stimuli. Because the model is linear, the best pairwise or multi-whisker 
stimuli can easily be determined by examining the STRFs and finding the direc-
tion with largest peak response for all significantly responsive whiskers, as well 
as the optimal time lags between them to make their peaks coincide in time. This 
exact stimulus combination was then delivered back to the neuron in the absence 
of any background stimuli to measure the response to optimal stimuli when 
the neuron was in an unadapted state and compared to the same stimuli when 
embedded within the complex multi-whisker presentation, the adapted state.

Statistics. Statistical tests were implemented in Matlab. Sample sizes were not pre-
determined, but retrospective analysis shows that the power of our significance 
tests was generally >90%. Our sample sizes are also similar to those of previous 
studies5,23,27. Stimuli were computer randomized (see above), but no randomiza-
tion of samples (cells or animals) was needed in our design.
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